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Figure 1: Performance comparison of GaussianCross on 3D scene understanding tasks. GaussianCross achieves superior
performance across various tasks, including semantic segmentation (Sem. Seg.) [4], instance segmentation (Ins. Seg.) [17], and
linear probing [37]. Left: full fine-tuning results on various downstream tasks. Right: linear probing accuracy.

Abstract

The significance of informative and robust point representations
has been widely acknowledged for 3D scene understanding. Despite
existing self-supervised pre-training counterparts demonstrating
promising performance, the model collapse and structural infor-
mation deficiency remain prevalent due to insufficient point dis-
crimination difficulty, yielding unreliable expressions and subop-
timal performance. In this paper, we present GaussianCross, a
novel cross-modal self-supervised 3D representation learning ar-
chitecture integrating feed-forward 3D Gaussian Splatting (3DGS)
techniques to address current challenges. GaussianCross seam-
lessly converts scale-inconsistent 3D point clouds into a unified
cuboid-normalized Gaussian representation without missing de-
tails, enabling stable and generalizable pre-training. Subsequently,
a tri-attribute adaptive distillation splatting module is incorpo-
rated to construct a 3D feature field, facilitating synergetic feature
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capturing of appearance, geometry, and semantic cues to main-
tain cross-modal consistency. To validate GaussianCross, we per-
form extensive evaluations on various benchmarks, including Scan-
Net, ScanNet200, and S3DIS. In particular, GaussianCross shows a
prominent parameter and data efficiency, achieving superior per-
formance through linear probing (<0.1% parameters) and limited
data training (1% of scenes) compared to state-of-the-art methods.
Furthermore, GaussianCross demonstrates strong generalization
capabilities, improving the full fine-tuning accuracy by 9.3% mlIoU
and 6.1% APsg on ScanNet200 semantic and instance segmenta-
tion tasks, respectively, supporting the effectiveness of our ap-
proach. The code, weights, and visualizations are publicly available
at https://rayyoh.github.io/GaussianCross/.

1 Introduction

Self-supervised representation learning has emerged as a transfor-
mative training paradigm for capturing expressive features from
large-scale unlabeled data. It has demonstrated promising potential
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across diverse downstream applications, including scene under-
standing [22, 42], navigation [20], and embodied manipulation [49].
While the success of 2D visual foundation models (VFMs) such as
MAE [11], MoCo [12], and DINOv?2 [25] trained by self-supervised
pre-training, the development of comparable 3D methodologies re-
mains critical for comprehensive physical world understanding [37].
However, different from available web-scale images, 3D data, espe-
cially point clouds, are usually scarce and come with sophisticated
spatial structures, hindering the design of effective self-supervised
representation learning strategies. The sparse and irregular nature
of the point cloud further complicates the learning process.

Although recent investigations [26, 27, 45, 46] have advanced
object-level point cloud representation learning, these approaches
face fundamental scale incompatibility when transitioning to scene-
level scenarios. Concurrently, some frameworks [8, 14, 33, 40, 41]
have attempted to explore contrastive learning-based algorithms for
capturing compelling 3D scene features, which typically generate
dual distinct views from the same scene and consider point-wise dis-
crimination as their pretext tasks. Despite empirical improvements
on downstream tasks, persistent challenges remain. For instance,
PointContrast [41] suffers from model collapse stemming from inad-
equate diversity in view augmentation strategies, while GroupCon-
trast [33] exhibits significant parameter sensitivity and depends
on precomputed over-segmentations [9], thereby restricting its
adaptability. On the other hand, the integration of neural render-
ing techniques introduces alternative pathways for self-supervised
representation learning. Ponder [15] pioneers a Neural Radiance
Field (NeRF) [24] based pre-training paradigm that leverages novel
view synthesis as the supervisory signal, but its practical scalability
is hampered by the inherent slow training and rendering speed.
GS? [21] conducts a preliminary exploration of 3D Gaussian Splat-
ting [18] (3DGS) for rendering-based pre-training strategy, which
implements epipolar transformer [36] for cross-view pixel-wise
alignment. However, this approach focuses exclusively on photo-
metric reconstruction while neglecting critical geometric and se-
mantic relationships, resulting in suboptimal performance on struc-
turally complex downstream tasks. Additionally, the method starts
from back-projected point clouds of sparse view RGB-D frames,
which is inherently limited to global context modeling.

To address the aforementioned challenges, we propose Gaus-
sianCross, a novel cross-modal self-supervised 3D representation
learning framework with Gaussian Splatting to learn informative
and robust point representations for scene understanding. Unlike
the per-scene optimization paradigm of vanilla 3DGS [18], our
method operates in a generalizable manner and is tailored to cap-
ture diverse intrinsic properties. Nevertheless, a potential challenge
is scale uncertainty across different indoor scenes, which causes
the model struggling to learn a unified representation as shown
in Fig. 3 top (w/o Cuboid-Normalized). To this end, we propose
Cuboid-Normalized Gaussian Initialization, a technique leveraged to
transform scene point clouds into a cuboid structure and parameter-
ize them as a collection of Gaussian primitives. The process enables
the model to flexibly adapt to scale variations in different scenes,
allowing seamless scene description conversion without compro-
mising detail fidelity. Furthermore, we introduce a Tri-Attribute
Adaptive Distillation Splatting module that utilizes the real-time
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rendering capability of rasterization splatting [18]. Apart from com-
mon Gaussian characteristics, we predict an offset to dynamically
refine the mean position and integrate an opacity-driven pruning
mechanism to control primitive density, which has proved crucial
for accurate scene representation. In addition, we incorporate a 3D
feature field to guide semantic map synthesis, aiming to pursue
high-level semantic-aware details. The generated maps are then
upsampled by a projection head to align with latent embeddings of
a pre-trained 2D foundation model, facilitating cross-modal knowl-
edge distillation. GaussianCross achieves simultaneous capture
of complementary photometric appearance, geometric structure,
and semantic context, prompting synergistic feature learning. The
self-supervised training process is performed by reconstructing
randomly sampled views to provide robust supervision, effectively
mitigating model collapse risk. Our contributions comprise:

e We propose a novel cross-modal self-supervised 3D repre-
sentation learning architecture for scene understanding with
generalizable Gaussian Splatting, named GaussianCross.

e We introduce a cuboid-normalized Gaussian initialization
technique to represent scenes as structured 3D Gaussians,
adapting to inconsistent scales across different scenes.

o We design a tri-attribute adaptive distillation splatting mod-
ule to jointly capture the appearance, geometry, and seman-
tic properties of scenes, achieving cross-modal knowledge
distillation from visual foundation models.

e Comprehensive experiments on various scene understanding
tasks demonstrate the superior performance of Gaussian-
Cross over previous state-of-the-art methods.

2 Related work
2.1 Point Clouds Self-supervised Learning

The recent proliferation of self-supervised learning in 2D [13, 52]
has inspired research efforts to adapt this paradigm to point cloud
analysis. Pioneering works like Point-MAE [26] and Point-BERT [46]
successfully transferred masked autoencoding [7] to object-level
point clouds by transformer-based architectures [32]. However,
scaling such object-centric approaches to scene tasks is non-trivial
due to sparse geometric structures in real-world 3D scenes. To
address this challenge, PointContrast (PC) [41] established an un-
supervised framework for indoor scenes, which learns point-wise
representation derived from RGB-D frames by maximizing the mu-
tual information between augmented views. Building upon this
foundation, Contrastive Scene Context (CSC) [14] introduced spa-
tial contextual constraints to encode structural relationships beyond
individual points correspondence. In [40], Masked Scene Contrast
(MSC) unified color reconstruction and surfel normal prediction
within a pipeline and proposed an efficient view generation strategy.
In contrast, recent innovations highlight semantic-aware learning
as a critical frontier. For example, GroupContrast (GC) [33] identi-
fied the semantic ambiguity problem and addressed it by a segment
grouping strategy based on pre-computed superpoints [9]. It further
proposed a group-aware contrastive loss to enhance the representa-
tion, while Point-GCC [8] incorporated deep clustering for object-
level supervision. Despite these advancements, current contrastive
methods remain susceptible to model collapse phenomena [33] and
exhibit parametric sensitivity. Our approach diverges from them by
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leveraging a cross-modal pre-training paradigm, which enhances
robustness and generalizability.

2.2 Cross-modal 3D Pre-training

There is another series of works aiming to pre-train 3D models
with cross-modal data. MM-Point [45] enforced cross-modal consis-
tency representations through point-to-pixel projection, aligning
specific view images with point clouds. While effective, these meth-
ods critically rely on the availability of well-aligned 2D-3D pairs,
which may not be feasible in many real-world applications. Instead,
some recent works [15, 21, 51] consider differentiable rendering
as a self-supervised signal by comparing arbitrary synthetic views
with real images for 3D scenes. Ponder [15] employed the neural
radiance fields-based [24] technique for SDF values and colors pre-
diction from query points based on NeuS [35]. Subsequent work
GS? [21] adopted 3D Gaussian Splatting [18] for photorealistic ren-
dering starting from multi-view RGB-D frames, but this approach
required input views to have overlapped regions and additional
computational cost due to its epipolar transformer [36] for view
alignment. PonderV2 [51] extended the prior version [15] to multi-
source pre-training based on Point Prompt Training (PPT) [39]
with language-guided alignment. Nevertheless, a potential limita-
tion is its reliance on 2D ground-truth supervision, which hinders
its scalability. Our work establishes another paradigm in this do-
main through semantic-aware knowledge distillation from VFMs
to point clouds with feed-forward Gaussian splatting, enabling
effective pre-training without any annotations.

2.3 Generalizable 3D Gaussian Splatting

Neural Radiance Fields (NeRF) [24] implicitly represent 3D scenes
with shallow Multi-Layer Perceptrons (MLPs), learning continuous
mappings from spatial coordinates to radiance fields. However, the
necessity of dense point sampling imposes a significant computa-
tional burden during both the training and rendering phases. 3D
Gaussian Splatting (3DGS) [18] revolutionized this paradigm by ex-
plicit scene parameterization using anisotropic Gaussian primitives,
achieving real-time rendering via differentiable rasterization splat-
ting. Although its high-quality rendering output, 3DGS is limited to
scene-specific optimization and lacks the ability to generalize to un-
seen scenes [2]. To address this problem, anchor-based 3DGS meth-
ods [2, 3, 36] are proposed. Specifically, PixelSplat [2] incorporated
epipolar transformers into the pipeline to enable a feed-forward
training paradigm for generalizable 3DGS, while MVSplat [3] and
FreeSplat [36] introduced additional techniques to construct cost
volume for efficient training and free-viewpoint rendering. Par-
allel advancements focus on enhancing Gaussian representations
through cross-modal fusion. GaussianGrouping [43] integrated pri-
ors for part-aware decomposition, Feature-3DGS [50] established
dense 2D-3D feature correspondences, and FiT3D [47] adapted vi-
sual foundation models via 3D-aware fine-tuning. Inspired by these
works, our GaussianCross introduces a novel knowledge distillation
framework that transfers VFM-derived semantic features into geo-
metrically grounded Gaussian embeddings, enabling label-efficient
pre-training of point cloud encoders.
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3 Methodology

This section begins with the preliminaries of 3DGS and presents
the overall architecture of GaussianCross in Fig. 2. We subsequently
detail our cuboid-normalized Gaussian initialization in Sec. 3.2 and
introduce the tri-attribute adaptive distillation splatting in Sec. 3.3.
Finally, we describe the loss functions in Sec. 3.4 that regularize our
cross-modal self-supervised learning.

3.1 Preliminaries

3DGS [18] considers a cluster of translucent ellipsoids characterized
by Gaussian primitives to represent scenes explicitly. Each of them
is defined by a center g € R® and covariance matrix % € R3*3,
expressed as:

G(x) = e_%(x_ﬂ)Tzil(x—ﬂ)‘ (1)

To assure positive semi-definiteness during differentiable optimiza-
tion, X is decomposed as X = RSSTRT, where R = g2r(q) and
S = diag(s) are rotation and scaling matrices, respectively. The op-
erators q2r(-) and diag(-) convert quaternions to rotation matrices
and construct diagonal matrices from scaling vectors, respectively.
Given an arbitrary view transformation matrix W, the 3D Gaus-
sians are splatted onto specific 2D camera plane with corresponding
mean and covariance:

Hop = PWp, Xpp = JWEW! T, ()

where P denotes projective transformation and J the Jacobian. Final
pixel color is computed by alpha-blending N ordered Gaussians:

i-1
Cp) =) e | [(1-ay, 3)

ieN Jj=1

where c; represents view-dependent spherical harmonics color and
a; combines X,p with opacity o;.

3.2 Cuboid-Normalized Gaussian Initialization

This section investigates the integration of 3DGS into point cloud
representation learning, motivated by its promise in complex scene
modeling without requiring labor-intensive 3D annotations. How-
ever, conventional 3DGS methods face limitations in scale-variant
scenes representation due to their scene-specific optimization. In-
spired by [51], we propose cuboid-normalized Gaussian initial-
ization aiming to alleviate scale variance effects while enabling
generalizable feature learning directly from point input.

Given a raw scene point cloud P, = {C;, Ar,i}?:p where C,; €
R3 denotes spatial coordinates x;, y;, z; and A, ; € R¢ represents as-
sociated c-dimensional attributes (e.g. RGB colors, surface normals)
per point. Analogous to previous works [21, 40], we mask out a
portion of the input by a ratio y and apply a sampling pattern:

S:lyPr] = Pg = {Cg,i,Ag,i};rzll (4)

with the size g to downsample the point cloud from n to m points.
The subsampled point cloud P is subsequently processed by a 3D
backbone &y with learnable parameters ¢:

Fy = 84/(P,) € R, ©
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Figure 2: The overall architecture of GaussianCross. The pipeline commences with cuboid-normalized Gaussian initialization
to establish coarse primitive means. Gaussian properties are subsequently decoded by G with a feature field. The tri-attribute
adaptive distillation splatting is performed to ensure cross-modal consistency.

yielding sparse features where ds is the channel dimension. Our
objective centers on learning discriminative and reliable point-
wise representations through &g by leveraging cross-modal self-
supervision signals.

To construct scale-agnostic representations, we develop a nor-
malized cuboid volumetric encoding scheme. This spatial normal-
ization is essential for learning generalizable scene representations
across varying scales. Specifically, we perform coordinate transfor-
mation J to map raw positions Cg4 into a unit cube, which guaran-
tees all scenes occupy a canonical domain while preserving relative
spatial relationships. We further apply a discretization operation
V, partitioning the cube into X X Y X Z uniformly voxels. This
process is described in Eq. 6 and voxel centers Cy are given by:

Co=V(I(Cy).X,Y,2). (6)

Each point Cg; is assigned a unique voxel index id € {1,2,...,X x
Y X Z} determined by spatial hashing and grid resolution, yielding
an index set ids = {id;}]_;. The voxel-wise embeddings are then
attained by scattering sparse features sharing identical indices:

F, = Scatter(Fy, 7 (Cy), ids, Cy) € RXXY>Zxds @

where unoccupied voxels are filled with zeros. The features F,
are then processed by a 3D convolutional neural network Sge” to
establish a dense feature volume:

Fd — Sgen(FU) e RXXYXZXdO’ (8)

where d, denotes the output dimension. With the structured scene
representation, we consider each voxel as an anchor and directly
serve its center C,; as coarse mean v; of the Gaussian. The voxel
features Fy ; are also assigned to the i-th Gaussian. Our experiments
demonstrate this cuboid-normalized initialization empirically out-
performs traditional SfM-based 3DGS methods [18, 31] in represen-
tation consistency (see Fig. 3), effectively enabling direct Gaussian
initialization from raw point clouds.

3.3 Tri-attribute Adaptive Distillation Splatting

To achieve self-supervised 3D representation learning, we consider
novel view synthesis as a pretext task, eliminating dependency on
3D supervision while maximally utilizing available 2D data. Build-
ing upon the dense features F; obtained in Sec. 3.2, we parameterize
Gaussian attributes via dedicated Multi-Layer Perceptrons (MLPs)
decoders with associated activations:

q; = Normalize(Gq(Fy;)), si = Softplus(Gs(Fq;)), (9)

where G4 and G; are quaternion and scaling prediction heads. Color
¢; and opacity o; are similarly decoded by:
c; = Sigmoid(Ge(Fy;)), oi = Sigmoid(Gs(Fg;)).  (10)

To address inaccuracy of coarse mean v; initialization in represent-
ing the actual scene, we introduce a predicted offset §; by:

S = tanh(g(s(Fd’i)) <A (11)
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Here, A controls the maximum displacement magnitude. The learned
offset §; is then added to v; yielding the refined mean p; = v; + §;.
Concurrently, we establish a feature field to capture potential se-
mantic cues of each anchor by projecting the dense features F ;
into a semantic-aware embedding q; with the dimension of dg:

fi=Gr(Fap), (12)
These attributes enable modeling the scene from different perspec-
tives and capturing comprehensive information. Although directly
initializing Gaussians from voxels ensures training efficiency, inher-
ent redundancy may compromise rendering fidelity and computa-
tional efficiency. We therefore introduce an opacity-driven pruning
mechanism with a threshold 7 to determine whether reserving the
anchor. Finally, we can explicitly represent the 3D scene by a series
of Gaussian primitives characterized by predicted properties:

{”lsql;slzcl)alsﬁ | oi > T}XXYXZ (13)

Then, we propose tri-attribute adaptive distillation splatting to
render multi-view images, depth, and feature maps, enabling the
model to pursue underlying photometric appearance, geometric
structure, and semantic information. The splatting is performed
by projecting 3D Gaussian primitives onto M camera planes with
different poses. Instead of picking specific views like [34], we ran-
domly sample M views from the training dataset for each scene to
enhance generalization ability. Color outputs {C, m} , are synthe-
sized following Eq. 3, where Cp,, € RFT*W>3 H and W are height
and width. Subsequently, geometric regularization is established

by depth map D, € RFXW generation:
Dm(p) = ), dict ]‘[(1 - aj), (14)
ieN Jj=1

where d; is the camera space z-depth of the i-th Gaussian. Our
framework further integrates feature field rendering into the proce-
dure to distill semantic-aware knowledge from a 2D visual founda-
tion model. Unlike PonderV2 [51] that directly predicts 2D semantic
labels, we consider feature correlations as intermediate supervision
to guide feature learning, eliminating the requirement of ground-
truth labels. The rendered feature map Fp, € RP*WX4r s denoted
as:

Fm(p) = ), fiai ]_[(1 - ). (15)
ieN Jj=1

We employ the latent features from a pre-trained VFM X as the
prior: 3, = X¢(Cy,) € REXWxd" yhere Xy is an arbitrary 2D
foundation model and C3, is the corresponding real color image.
Nevertheless, a potential challenge lies in that the dimension d*
of ¥, is usually large, making it time-consuming to render such
high-dimensional feature maps. Therefore, we tend to render a low-
dimensional map (dy < d*). To address the dimension disparity,
we implement a lightweight projection head Gy to upsample ¥,
to align with the dimension of ¥,

Fm = Poy(Fm), (16)

where ¥, € REXWXd" Thjs design strategically balances compu-
tational efficiency with semantic fidelity, enabling effective distilla-
tion of 2D priors into 3D representations without compromising
rendering performance.
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3.4 Training Loss Functions

The principle of our design is to adhere the model to capture multi-
faceted properties from raw 3D scenes and incorporate available
priors from VEMs into 3D feature space. We introduce a [; loss
denoted as Ljmg to measure the discrepancy of exported photo-
realistic images Cp, and the ground truth C}, aiming to capture
adequate appearance details:

1 M
i Zlncm—c:‘nn. (a7
m=

For splatted depth maps Dy, we also use the [; loss L, within
valid pixels to regularize geometric features alignment with con-
comitant real depth maps Dy,
M H W
*
Laep= 32w Do D Z Yo, M Dmpw=D ] (18)

m=1h=1 w=

-Eimg =

where ]I{.} denotes the indicator function. Furthermore, in terms of
the yielded feature maps ¥ m from our semantic feature field, we
integrate a similarity loss Lgem to distill 2D knowledge priors by
aligning with ¥, from VFMs:

M A
1 Fm-Fm
Lsem = — E 1-—— (19)
M = IITmIIIITTnH]

Therefore, our cross-modal pre-training framework can work in a
self-supervised manner without the requirement of human annota-
tions, and the total loss is defined as:

L = limgLimg + AdepLaep + Asem Lsem, (20)

where Aimg, /ldep, and Agem are weights to balance different losses.

4 Experiments
4.1 Experimental Settings

Backbone and Data. We implement our GaussianCross by Point-
cept [5]. Following established practice [33, 51], we adopt a Subman-
ifold Sparse Convolution UNet [10] (SparseUNet) as the 3D back-
bone 8¢ and consider 6-dimensional attributes as input features,
comprising RGB values and normal vectors. We pre-train Gaus-
sianCross on ScanNet [6] and evaluate downstream scene under-
standing performance on ScanNet, ScanNet200 [30], and S3DIS [1]
benchmarks, respectively. ScanNet [6] provides 1601 3D scenes with
corresponding RGB-D frames, including 20 semantic classes for
semantic segmentation and 18 object categories for instance recog-
nition. The extended challenging version, ScanNet200 [30], shares
the same data yet contains more fine-grained annotations, expand-
ing the labels to 200 semantic categories and 198 instance types.
S3DIS complements our evaluation with 271 indoor scans across 6
large-scale areas, annotated with 13 distinct classes. We evaluate
the performance on Area5 and 6-fold cross-validation settings.

Training Details. We train GaussianCross on ScanNet [6] for 1200
epochs using 8 NVIDIA RTX 4090 GPUs with a batch size of 32. The
learning rate is initialized as 2e =3 with the AdamW optimizer, mod-
ulated by a OneCycle learning rate scheduling policy. Input point
clouds undergo standard geometric augmentations, including ran-
dom rotation, anisotropic scaling, and flipping. Our view synthesis
configuration uses 5 rendering views, each with a resolution of 480
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Table 1: Parameter efficiency via linear probing. SpUNet
means SparseUNet [10] as the backbone.

Yao et al.

Table 2: Data efficiency on ScanNet Data Efficient bench-
mark [14] by limited scenes and point annotations.

Linear Prob.

Methods

ScanNet  ScanNet200 S3DIS Area5 S3DIS 6-fold

mloU mAcc mloU mAcc mloU mAcc mloU mAcc

Data Eff. Limited Scenes (Pct.)  Limited Annotations (Pts.)

Methods 1% 5% 10% 20% 20 50 100 200

o SpUNet [4] 72.2 80.2 25.0 329 663 725 724 809

o SpUNet [4] 26.0 47.8 56.7 629 419 539 622 655

PC [41] 56 97 05 09 114 186 11.7 19.0
CSC [14] 126 181 13 21 244 320 249 325
e MSC [40] 141 203 15 25 279 355 299 379

e Ours 233 309 36 53 34.7 441 359 455

% 640. The mask ratio y is set to 50%, and the opacity threshold 7 is
set to 0.3 to trade-off between rendering fidelity and computational
efficiency. For semantic feature alignment, we integrate pre-trained
weight from RADIOv2.5 [13] as the frozen visual encoder Xf.

4.2 Comparison with State-of-the-Art Methods

In this section, we conduct comprehensive benchmarking of Gaus-
sianCross against existing approaches across various tasks. We start
by assessing parameter efficiency by linear probing following the
protocol established in Sonata [37] and data efficiency with limited
scene reconstruction and point annotation data settings. We then
evaluate the transfer learning performance through full fine-tuning
on 3D semantic and instance segmentation tasks. In our tables,
we denote o, e, and e as training from scratch, self-supervised
pre-training, and supervised pre-training, respectively. For more
details, please refer to the supplementary materials.

4.2.1 Linear Probing. To quantify the intrinsic quality of learned
representations, we implement a linear evaluation protocol where
only the classification layer undergoes training while the back-
bone remains frozen. This parameter-efficient paradigm directly
measures feature separability in the pre-trained embedding space.
Results in Tab. 1 demonstrate GaussianCross’s superiority, achiev-
ing 23.3%, 3.6%, 34.7%, 35.9% mloU on ScanNet, ScanNet200, S3DIS
Area5 and 6-fold, respectively. Although GaussianCross outper-
forms other methods, the performance discrepancy between linear
probing and full training reveals that current self-supervised ob-
jectives remain to be further optimized. This suggests that while
GaussianCross excels in learning transferable representations, there
is still room for improvement in the pre-training process itself.

4.2.2 Data Efficiency. In Tab. 2, we systematically evaluate the
data efficiency by fine-tuning on ScanNet Data Efficient bench-
mark [14] with limited scenes and point annotations. The results
on both configurations exhibit impressive improvements compared
to learning from scratch baselines (cf. ). In the case of extreme
data scarcity and limited point annotations, GaussianCross also
obtains the best performance among all other counterparts, with
32.1% and 61.7% mloU on 1% scenes and 20 points per scene scenar-
ios. Notably, GaussianCross can even outperform the supervised
pre-training model (e.g. ¢ PPT [39]), providing empirical valida-
tion that our cross-modal self-supervised objectives learn more
transferable structural priors than manually curated supervision.

e CSC [14] 289 49.8 594 64.6 555 60.5 659 682
e MSC [40] 29.2 50.7 610 649 60.1 668 69.7 70.7
e GC[33] 307 529 620 665 612 673 703 718
e PPT[39] 313 523 628 664 606 675 70.8 72.2
e Ours 32.1 53.5 64.2 67.3 61.7 68.5 72.2 73.3

A +6.1 +5.7 +7.5 +4.4 +19.8 +14.6 +10.0 +7.8

This evidence positions GaussianCross as a theoretically grounded
framework for label-efficient 3D scene understanding.

4.2.3 3D Semantic Segmentation. In Tab. 3, we present mloU
(%) results for 3D semantic segmentation on ScanNet [6], Scan-
Net200 [30], and S3DIS [1] benchmarks. Under the self-supervised
pre-training setting (cf. e ), GaussianCross attains the best perfor-
mance across all datasets, demonstrating a 76.0% mIoU on ScanNet
validation set - a 2.5% absolute improvement over prior neural
rendering approaches such as GS® [21] and Ponder [15]. More-
over, our method outperforms multi-datasets pre-training strategies
MSC [40] and PPT Unsup. [39] by 4.8% and 3.2% on ScanNet200, re-
spectively. Although supervised pre-training baselines (cf. e ) main-
tain marginal advantages on ScanNet (<1%), our method establishes
new state-of-the-art on ScanNet200 by enhanced semantic discrim-
inability. This demonstrates the generalization of our method in
learning transferable 3D representations and the potential of pro-
cessing semantically complex scenarios. Consistent performance
gains are observed on S3DIS under both Area5 (72.1%) and 6-fold
cross-validation (76.8%) settings, confirming its robustness.

4.24 3D Instance Segmentation. In Tab. 4, we compare the re-
sults of instance segmentation on ScanNet [6] and ScanNet200 [30]
validation splits with PointGroup [17] as the baseline model. We
report AP35, APsg, and mAP for comprehensive evaluation, follow-
ing the common practice [17, 42]. On ScanNet, the achieved 62.7%
APsq represents a 6.2% improvement over the baseline without pre-
training, significantly outperforming previous contrastive learning
methods that typically struggle with instance boundary discrimi-
nation. The performance gap is more pronounced on ScanNet200,
where GaussianCross attains 30.6% mAP. The consistent superiority
suggests that our method provides complementary benefits beyond
pure color rendering (GS?), underscoring the effectiveness of our
designs in instance-level understanding.

4.3 Ablation Studies and Analysis

We perform systematic ablation studies to investigate the efficacy
of our core designs and analyze the effect of different parameter
choices. We utilize 3D semantic segmentation and assess the perfor-
mance on both ScanNet [6] and ScanNet200 [30] validation splits
for a comprehensive evaluation.
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Table 3: 3D semantic segmentation results. The best results are highlighted in bold, and the second-best results are in underlined.

Semantic Segmentation ScanNet ScanNet200 S3DIS
Methods | Venue | Pre-training Datasets | Type | Val mloU ValmloU Area5 6-fold
Supervised Learning from Scratch

o PointNeXt [28] | NeurIPS 2022 X X 71.5 - 70.5 74.9
o StFormer [19] CVPR 2022 X X 74.3 - 72.0 -

o PTv1 [48] ICCV 2021 X X 70.6 27.8 70.4 65.4
o PTv2 [38] NeurIPS 2022 X X 75.4 30.2 71.6 75.1
o SpUNet [4] CVPR 2019 X X 72.2 25.0 66.3 72.4

Self-supervised Pre-training

o GS® [21] arXiv 2024 ScanNet Rendering | 73.4.1.2 - 70.1,3.8 -

e Ponder [15] CVPR 2023 ScanNet Rendering | 73.5.13 - - -

e CSC [14] CVPR 2021 ScanNet Contrast | 73.8.16 264,14 707,44 75.5.3.1
e PC [41] ECCV 2020 ScanNet Contrast 74.1:19 262,12 703,40 74.7.23
e MSC [40] CVPR 2023 ScanNet, ArkitScenes Contrast | 75.5.33 32.0,70 707,44 -

e GC [33] CVPR 2024 ScanNet Contrast 75.7.35 30.0,50 72.0.57 -

e PPT Unsup. [39] | CVPR 2024 | ScanNet, Structure3D, S3DIS | Contrast | 75.8.3¢ 304,54 719,56 -

e GaussianCross - ScanNet Rendering | 76.0.38 34.3.93 72.1.58 76.8.4.4

Supervised Pre-training

e PPT Sup. [39] CVPR 2024 | ScanNet, Structure3D, S3DIS 3D Sup. 76.4.4.2 319,69 72.7.64 781,57
e PonderV2 [51] arXiv 2024 | ScanNet, Structure3D, S3DIS 2D Sup. 77.044.8 323,73 732,69 799,74
e ARKit LM [16] CVPR 2025 | ALS200, ScanNet/ScanNet200 | 3D Sup. 77.0,4.8 30.645.6 - -

Table 4: 3D instance segmentation performance on Scan-
Net [6] and ScanNet200 [30]. PG indicates PointGroup [17].

Ins. Seg. ScanNet ScanNet200
Methods APys APs mAP APys APs mAP

o PG [17] 72.8 56.9 36.0 322 24.5 15.8

e PC[41] - 58.0 - - 24.9 -

e GS® [21] - 59.2 37.0 - - -

e CSC [14] - 59.4 - - 25.2 -

e MSC [40] 747 59.6 39.3 34.3 26.8 17.3
e GC [33] - 62.3 - - 27.5 -

e Ours 77.04_4'2 62.7+6_2 40.84,4.3 38.4+5,8 30.64,6,1 20.64_4,8

Core Designs. In Fig. 3 top, we analyze the impact of our core de-
signs by recording the PSNR of rendered images during pre-training.
We observe that using traditional Gaussian mean initialization
leads to a significant drop (14.9 v.s. 18.2), indicating that the model
struggles to learn meaningful representations. The variant without
Gaussian mean refinement achieves a PSNR of 17.6, suggesting
that the learned offset can help with accurate scene representation.
Different rendering targets specialize in distinct attributes of 3D
scenes, thus impacting the representations. Therefore, we explore
the synergistic effects of multi-target rendering in Tab. 5. The base-
line using only photometric reconstruction achieves 75.0% mIoU

Table 5: Ablation study of rendering targets. img., dep., sem.
denote RGB image, depth, and semantic feature maps.

ScanNet ScanNet200

w/img. w/ dep. w/ sem.

mloU mAcc mloU mAcc

75.0 82.9 32.8 42.1
75.3 83.0 33.0 42.4
75.5 33.0 33.7 42.5
76.0 83.5 343 43.1

NN
>\
AR

on ScanNet and 32.8% on ScanNet200, establishing a performance
floor that highlights the limitation of pure appearance modeling.
Incorporating geometric consistency by depth supervision yields a
slight improvement, revealing that explicit spatial cues enhance 3D
structure understanding. The performance is elevated to 75.5% and
33.7% when bridging semantic alignment via knowledge distilla-
tion. The optimal configuration combining photometric, geometric,
and semantic targets achieves 76.0% and 34.1% mloU, respectively,
proving the complementary nature of tripartite rendering.

Masking Ratio y. We adopt a stochastic masking strategy gov-
erned by parameter y to occlude a portion of input regions during
pre-training. To test its impact, we vary y from 10% to 90% in 20%
increments. As evidenced in Fig. 3, the results show that better
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Figure 3: Ablation study of core designs and masking ratio y.

Table 6: Impact of opacity threshold .

Sc.  Sc.200 Average| PSNRT Memory| Time]|
mloU mloU mloU | (dB) (MB) (s/scene)

0.1 754 333 54.3 18.16 5614 0.265
0.3 76.0 34.3 55.1 18.18 5296 0.255
0.5 75.6 33.6 54.6 17.94 5251 0.251
0.7 74.8 33.0 53.9 17.62 5204 0.241

performance can be achieved when y equals 50%, with perturba-
tions within +20% causing statistically insignificant performance
deviations. However, extreme values of 10% or 90% induce signifi-
cant performance degradation, revealing the model’s sensitivity to
excessive occlusion or exposure. This suggests the importance of
balanced masking in self-supervised learning.

Opacity Threshold 7. We introduce an opacity-driven pruning
strategy to determine the visibility of each anchor Gaussian and
optimize the rendering quality. In Tab. 6, we examine 7 from 0.1
to 0.7. We also report memory consumption and training time for
each scene. When increasing the threshold from 0.1 to 0.3, the
performance is also improved, while further raising the value to
0.5 or 0.7 will lead to a drop. This is because a higher threshold will

Yao et al.

Table 7: Effectiveness of M and Xf.

Rendering Views M VFMs X¢

2 5 8 |CLIP DINOv2 RADIO

Datasets & Metrics

ScanNet mloU | 758 76.0 756 | 754 749  76.0
mAcc | 83.7 835 835 | 835 831 83.5
mloU | 339 343 340 | 339 336 343
ScanNet200 ) ace ‘ 428 43.1 429 ‘ 429 430 431
mloU ‘ 543 551 54.6 ‘ 546 542  55.1
Average

mAcc | 624 633 62.1 | 63.2 63.0 63.3

filter out more anchors. Therefore, we set 7 to 0.3 in our experiments
to balance rendering quality and amount of information.

Visual Foundation Models X. GaussianCross’s architectural
flexibility allows for seamless integration with diverse visual foun-
dation models. However, different models excel at distinctive prop-
erties that affect scene understanding. Results in Tab. 6 indicate no-
table performance variance across foundation models, with CLIP [29]
and DINOv2 [25] yielding suboptimal results. Because of the ag-
glomerative multi-domain training strategy, RADIO [13] achieves
optimal 76.0% mIoU on ScanNet and 34.1% on ScanNet200.
Number of Rendering Views M. Theoretically, more views could
offer broader supervision for pre-training, but it also introduce extra
computational costs and increase training time. Thus, we investi-
gate the impact of M in Tab. 7. We set M to 5 in our experiments to
balance the performance and efficiency.

5 Conclusion

In this paper, we present GaussianCross, an innovative framework
leveraging 3DGS for cross-modal self-supervised point cloud repre-
sentation learning. Our cuboid-normalized Gaussian initialization
establishes scale-consistent scene representations by transforming
raw point clouds into a structured collection of Gaussian primi-
tives within a canonical space. The proposed tri-attribute adap-
tive distillation splatting jointly optimizes photometric appearance,
geometric structure, and semantic consistency by differentiable
rendering with a feature field while effectively distilling the 2D vi-
sual foundation model for enhanced semantic awareness. Extensive
experiments demonstrate state-of-the-art performance across mul-
tiple benchmarks, including linear probing and transfer learning.
Comprehensive ablation studies further validate the effectiveness
by systematically analyzing core design components. For future
work, we will explore scalable backbone architectures to enhance
representation capability and investigate the potential of scaling
up GaussianCross to large-scale multi-source datasets, aiming to
advance the development of 3D foundation models.
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Table S.2: Semantic segmentation settings of parameter ef-
ficiency [37], data efficiency [14], and full fine-tuning on
ScanNet [6], ScanNet200 [14], and S3DIS [1].

Config Value

ScanNet ScanNet200 S3DIS
Optimizer AdamW
Betas (0.9, 0.95)
Weight Decay 0.05
Learning Rate 0.005 0.005 0.003
Learning Rate Scheduler Cosine
Batch Size 32 32 24
Data Efficiency Batch Size 24 - -
Epochs 800 800 3000
Warmup Epochs 40 40 150
Crop Size 102400 102400 204800
Grid Sampling 0.02m

Table S.3: Instance segmentation settings on ScanNet [6] and
ScanNet200 [14].

Config Value
ScanNet  ScanNet200
Optimizer AdamW
Betas (0.9, 0.95)
Weight Decay 0.05
Learning Rate 0.005
Learning Rate Scheduler Cosine
Batch Size 12 24
Epochs 800
Warmup Epochs 40
Crop Size Sample rate 0.8
Grid Sampling 0.02m

Table S.1: Implementation details of GaussianCross.

Config Value
Training Details
Optimizer AdamW
Betas (0.9, 0.95)
Weight Decay 0.05
Learning Rate 0.002
Learning Rate Scheduler Cosine
Batch Size 32
Epochs 1200
Warmup Epochs 60
Mask Ratio 50%
Masking Strategy Random

Data Augmentation

Random Rotation z, [—m, ], p: 1.0

x, [—m/64, m/64], p: 1.0
y, [—7/64, m/64], p: 1.0
Random Scaling [0.9,1.1],p: 1.0
Random Flip p:0.5

Shuftfle Point p: 1.0
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A Appendix Overview

In this supplementary material, we provide more details about our
proposed GaussianCross. Specifically, we demonstrate more qual-
itative results, including visualization of learned representations,
rendered images, depth maps, and semantic-aware feature maps.
We also visualize the zero-shot representation of GaussianCross
on S3DIS [1] and ScanNet++ [44]. In addition, we include imple-
mentation details for self-supervised representation learning and
fine-tuning on downstream tasks.

B Qualitative Results

B.1 Visualization of Learned Representations

In Fig. S.1, we visualize input point clouds, UMAP [23] results of
learned representations, and corresponding synthetic RGB images,
depth maps, and semantic-aware feature maps. From the results,
we can observe that the learned point cloud representations are
well clustered by UMAP on ScanNet [6], indicating that our Gaus-
sianCross can effectively learn meaningful and expressive repre-
sentations. For example, as shown in the second row, our learned
representations are able to distinguish chairs and tables, proving
that our model can reveal potential spatial relationships from the
input point clouds by self-supervised learning.

The color images, depth maps, and feature maps are rendered by
our tri-attribute adaptive distillation splatting module during the
pre-training process. Benefiting from the cuboid-normalized Gauss-
ian initialization, our model can be generalizable to scale-variant
point clouds. For instance, both the classroom (second row) and
apartment (third row) scenes are well rendered with the correct col-
ors and depth information. As for the semantic-aware feature maps,
they can clearly recognize the semantic categories of the objects
across different scenes, which is attributed to the incorporation of
knowledge from 2D visual foundation models.

B.2 Spatial Matching

B.2.1 In Domain Representation. To further validate the quality
of the learned representations by GaussianCross, we visualize the
dense spatial matching [37] results by some examples. Specifically,
we select one query point from each scene and calculate the cosine
similarity between the query point and others in the scene. We
demonstrate the activation maps of the cosine similarity scores,
where the brighter regions indicate higher similarity. The results on
ScanNet [6] are shown in Fig. S.2 with red cross marks highlighting
the query points. We can observe that the learned representations
are able to match the query points with their corresponding cat-
egories. For example, GaussianCross can successfully match the
query points of sofa, monitor, bed, table, and wall across scenes.
This indicates that the model can learn discriminative representa-
tions, which is beneficial for downstream tasks such as semantic
segmentation and instance segmentation.

B.2.2  Zero-shot Representation. In Fig. S.3 and Fig. S.4, we visu-
alize the zero-shot representation of GaussianCross on S3DIS [1]
and ScanNet++ [44]. We directly apply the pre-trained weight on
ScanNet to these two unseen datasets without any fine-tuning and
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Figure S.1: Qualitative results of GaussianCross on ScanNet [6]. We visualize the input point cloud and learned point represen-
tations using UMAP [23]. We also present the corresponding rendered images, depth maps, and semantic-aware feature maps.

then visualize the results similar to Fig. S.2. From the figures, we
find that GaussianCross demonstrates generalization ability to out-
of-domain datasets.

B.3 Comparison with Ground Truth

In Fig. S.5, we provide a qualitative comparison of GaussianCross
rendered images and depth maps with ground truth. We also show
the synthesized semantic-aware feature maps. We can observe that
the rendered images and depth maps are visually similar to the
ground truth. Although there are some artifacts in the rendered im-
ages, the overall quality is still acceptable, and the rendered feature
maps can help to alleviate this issue to some extent. Meanwhile, the

depth information is also well-preserved to guarantee spatial con-
sistency. This indicates that our tri-attribute adaptive distillation
splatting can efficiently learn photometric appearance, geometrical
structure, and semantic information simultaneously.

C Experimental Details
C.1 Pre-training

We implement our GaussianCross using Pointcept [5] based on Py-
Torch. The self-supervised pre-training is conducted on ScanNet [6].
The training details and data augmentations for the pre-training
process are summarized in Tab. S.1. We adopt a 5-layer submanifold
sparse convolutional U-Net [4] (SparseUNet34C) as the point cloud
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Figure S.2: Visualization of activation maps of cosine similarity scores on ScanNet [6]. The query points are highlighted with
red cross marks.

Chair Ceiling Bookcase

Figure S.3: Zero-shot representation of GaussianCross on S3DIS [1]. The query points are highlighted with red circles.
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Figure S.4: Zero-shot representation of GaussianCross on ScanNet++ [44]. The query points are highlighted with red circles.
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Figure S.5: Qualitative comparison of GaussianCross rendered images, depth, and semantic-aware feature maps with ground
truth.

backbone for performance comparison and ablation studies similar

and Tab. S.3, respectively. For parameter efficiency, data efficiency,
to MSC [40], PPT [39], and GC [33].

and full fine-tuning, we follow the same settings. All downstream

tasks are trained on 4 NVIDIA 4090 GPUs.
C.2 Downsteam Tasks

We use the same backbone architecture as the pre-training process
for downstream tasks. The training details for semantic segmen-
tation and instance segmentation are demonstrated in Tab. S.2
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